If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34m^2+62m-60=0
a = 34; b = 62; c = -60;
Δ = b2-4ac
Δ = 622-4·34·(-60)
Δ = 12004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12004}=\sqrt{4*3001}=\sqrt{4}*\sqrt{3001}=2\sqrt{3001}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{3001}}{2*34}=\frac{-62-2\sqrt{3001}}{68} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{3001}}{2*34}=\frac{-62+2\sqrt{3001}}{68} $
| 6(5=m)+12m | | m+27=45 | | x+1.4=34.2 | | 10+3x+2(x+8)=76 | | 2(-x+5)+5x-3=12 | | 87=f+4 | | p+4=88 | | 12=1/2xx | | -6x-3=-5x+2 | | 12-12x=3(4-x) | | 40x+10(x*1.5)=1288.46 | | 4(4x-2)=2(8x-2) | | 4{y-2}+7=23 | | 4(c+12)=2c+1815 | | 10.4(c+12)=2c+1815 | | -11x+10=-10(x-1) | | 12.3=x-10 | | 9x-1=8x-5 | | x+3.5=8.5 | | 59(g+18)=16g+3-18 | | -5x+10=-4x-3 | | 3t-17=5t+7* | | -4x^2+6x+28=0 | | |3f+0.5|=7 | | z/7=28 | | 23(t+6)=5(2t+11) | | |3f-0.5|=7 | | -5(-7x+4)=295 | | -5(-7d+4)=295 | | 2.4=t÷4.5 | | 3x – 7 = 17 | | 20–2d=10 |